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1.0 Executive Summary  

Insight Racing’s design is based on three “Golden Rules” in the following order:  

1) No Collisions 
2) Follow All Traffic Laws 
3) Complete Every Mission  

Key Findings and novel approaches include: 

 

Development of a modular architecture to integrate large amounts of sensor data 
in a real time environment 

 

A combining of techniques to achieve real time processing of camera images 
scanning the captured color image for yellow and white regions and extracting 
lines used in lane marking and parking lots 

 

Miniaturization of the solution to meet vehicle space constraints of a sports car, 
with special considerations for power and cooling 

 

Mathematical techniques for identification and combining objects, both moving 
and static 

 

Efficient route planning between checkpoints 

 

Efficient path planning between obstacles  

In utilizing the architecture and system described herein, Insight Racing’s Urban 
Challenge entry is running at speeds up to 25 miles per hour and averaging approximately 
18 mph on a mission.  At the time of this writing, testing of behaviors known as 
Advanced Navigation is underway. 

2.0  Introduction and Overview  

2.1  Overall Problem To Be Solved  

The Urban Challenge is an autonomous vehicle race where full sized cars and trucks 
compete in an Urban Setting.  These vehicles drive around the city unassisted.  They 
interact with each other, follow traffic laws, navigate intersections, traffic, park, and pass 
other vehicles.  

The following capabilities are needed in our Urban Challenge entry:  lidar processing for 
obstacle detection and avoidance, master control module for decision making, control of 
brakes, throttle, transmission, steering, capability to operate in reverse, high speed image 
processing and radar for longer range obstacle detection and avoidance, position analysis, 
sparse waypoint operation, operation up to 30 mph, operation without Global Positioning 
System (GPS) signal, sensing of road edges, and driver display and monitoring module.     
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2.2   Issues That Drive Design Choices  

The new design challenges for the Urban Challenge are:  

 
Vehicle routing algorithms 

 
Path planning 

 
The need to collect data from the 360° area around the vehicle  

 

Detecting lines which denote road and parking lot markings  

 

Integration of multiple sensors with significant data processing requirements   

 

Awareness of position and operation of other moving vehicles 

 

Operating at intersections 

 

Operation in an unstructured environment such as a zone or parking lot 

 

Real time processing of camera images to support 30+ mile per hour speeds 

 

The need to isolate various design elements for testing  

Insight Racing is using a Lotus Elise sports car as its Urban Challenge entrant which 
imposes additional vehicle space constraints over some other Urban Challenge teams.  

2.3  Design Approach  
This design approach is based on the three (3) “Golden Rules in the following order:”  

1) No Collisions 
2) Follow All Traffic Laws 
3) Complete Every Mission  

There are several reasons why Insight Racing designed this System Architecture.    

1) It is an architected system (See Figure 1.).  The architecture allows for a modular 
design. These design units can be developed and tested individually and then integrated 
for final test.  Any issues in the system can be easily isolated to architected interfaces. 
The ability to add new sensors and to remove sensors is very easy with an architected 
modular design.     

2) The architecture is based on a distributed processing model. This allows us the ability 
to run unique code modules on physically different processors and allows us the ability to 
run any specific code module on multiple physical processors to support redundancy of 
key modules. These features allow us the ability to easily balance the load on the 
processors and to use excess processing power to run redundant tasks.    

3) Because we use an architected modular design and distributed processor model, we are 
able to easily scale our overall control system to any size platform. It can be scaled to add 
many sensors for a large system or to remove sensors to create a very simple system.  All 
the physical I/O is confined to a single design module. This allows us to replace the 
physical control system without impacting any of the sensors processing, path planning, 
or decision making modules.  
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Insight is using a Lotus Elise to provide a miniaturized solution, suitable to both military 
and commercial use.  Insight is mounting equipment in the trunk, on a platform mounted 
on top of the Elise, and on special front and rear bumpers.  Sensors will be mounted on 
the front, rear and top of the Elise.  Some of the top sensors are mounted to rotate to look 
left and right of the vehicle.  The trunk is fitted with computers, power, additional cooling 
and networking equipment.  

Insight will use 9 small format mini computers running Linux for processing power with 
Gigabit Ethernet interfaces.  All the computers will be running Linux with a C based 
development environment.  We will use Ethernet to access our sensor data which is 
concentrated in Comtrol units stored in the trunk. The Comtrol devices concentrate either 
serial devices or SICK high speed Lidar data into a single device that can be accessed on 
the Ethernet. Each processor can access an individual device with a Transmission control 
Protocol/Internet Protocol (TCP/IP) socket, allowing us to move modules to different 
processors and to fail-over processes without physically moving any sensor’s physical 
connection. This worked very well in our 2005 Grand Challenge vehicle. We will use a 
similar architecture to our previous vehicle, enhanced to work with more processing 
power and more sensor data.  Some of our video modules will use C with assembler 
subroutines to allow access to the processor SIMD (Single Instruction Multiple Data) 
instructions. 

2.4  High Level Architecture 
Our strategy to balance load on the computers is to distribute processing as far to the 
outside edge of the architecture as possible (reference figure 1).  Then we will move the 
object description blocks to the center where we make decisions based on all the 
available information.    

Our reliability strategy includes many facets.  First, our sensors overlap in coverage and 
technology. We overlap key areas with radar, cameras and lidars to ensure we identify all 
objects.  The sensor inputs are handled using unique processing modules and then 
compared for consistency and completeness.  This is important based on the significant 
noise in the sensor systems.  

In addition, one specialized module monitors all the processes and re-initializes 
processes, if needed.  This monitoring module also redistributes processing to other 
physical processors in the case of hardware failure.  Key processes will be run on 
multiple physical processors.  This monitoring module is based on technology developed 
for our 2005 Grand Challenge entry.    
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Figure 1 - Urban Challenge Architecture  

2.4.1 Object Sensing Systems   
Each sensor will process raw sensor data and identify objects within its field of view.  
The Object Sensing modules include processing for:  Front & rear Lidar units,  4 Corner 
Lidar units, Lane following camera, Top Stereo Camera, and 3 radar units (See figure 2).  

All the object information from each of the object sensing subsystems is collected by the 
Scene Analysis Module (SAM).  SAM will fuse all the object information and form a 
single 360 degree map around the vehicle.  Each of the objects will be combined based 
on overlap between the sensors and will be represented based on the object's direction 
and speed.  This map will then be used for path analysis to determine correct direction of 
the Urban Challenge vehicle at that point in time.  This will include obstacle avoidance. 
The SAM map is based on an x,y meter grid. All lat/long positions are transferred to this 
flat space.  All objects are referenced to a specific x,y location which helps maintain 
correct positions during turns and changes in speed.  
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Figure  2 - Object Sensing System 

2.4.1.1 Lane Following Camera  - To determine the lane markings and/or the edge of 
the road on the left and right side of the vehicle.  This information is used to center the 
vehicle in the lane.  The  camera is located in a fixed position elevated above the vehicle 
roof platform near the front.  It looks down approximately 45 degrees from the horizontal 
to get good visual identification of the lane.  (See Figure 2)  

2.4.1.2 Front & Rear Lidar - To determine the contour of the terrain in  
front and back of the vehicle.  It is  also used as a secondary determination of other 
vehicles in the same lane.  Lidar is mounted on the front and rear bumper near the center.  
Lidar scans in a vertical plane. (See Figure 2)  

2.4.1.3 Curb Finding Lidars – To determine the location of features that may identify 
the edge of the road.  This will include curbs, ditches, medians and other objects that 
have a vertical profile with respect to the road surface.  These lidars are mounted at a 45° 
angle on the front bumper just inside each corner and have a vertical sweep.  This allows 
the vehicle to see the road surface and any vertical projections that it may be 
approaching.  This will also provide useful information when on dirt roads as it will help 
determine features at the edge of the unmarked road.  (See Figure 2)  

2.4.1.4 Top Stereo Camera - To determine range information (distance) to other 
vehicles and objects in front of our vehicle.  This is mounted on the top platform facing 
forward. This is similar to the mono cameras in that it looks forward during driving. (See 
Figure 2)   
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2.4.1.5 Left & Right & Center Top Radar - To determine the objects around the 
vehicle.  Three automotive radar units will be placed on the vehicle.  One will be placed 
at the center of the top platform.  The second will be placed at the left top of the platform.  
The third unit will be placed at the right top platform. Each radar may be moved 180 
degrees and will help detect oncoming traffic at intersections.  They will also be used to 
detect longer range objects.  The Delphi radar has the capability to capture static and 
dynamic objects at a distance of up to 150 meters. (See Figure 2)  

2.4.1.6 Four Corner Lidar - To determine the precise location of vehicles and objects 
in close proximity to our vehicle.  The lidars are placed in each of the four corners of the 
vehicle at approximately the bumper level.  They are mounted on the front and rear 
bumpers and sweep a horizontal plane parallel to the ground.  These devices are key to 
maintaining vehicle spacing and to support all traffic merging operations.  These devices 
will also support object detection at slower speeds.  (See Figure 2)  

2.4.2 Location Sensors (See Figure 2) 
The location sensors will determine our position, heading and speed based on a variety of 
sensor inputs.  These are both redundant and independent. The Position Analysis Module 
(PAM) includes processing for:  GPS, GPS/INS (Inertial Navigation System), and 
Attitude Heading Reference System (AHRS) units.  PAM will output a single position, 
heading, and speed based on all input.  

2.4.2.1 GPS - To determine the location, direction and speed of the vehicle.  The GPS 
has 10 centimeter accuracy using Omnistar HP service.  This device is used as a back up 
for position.  

2.4.2.2 GPS/INS - To determine the location, direction and speed of the vehicle.  This 
device uses inertial navigation to allow us to maintain position information when GPS 
signals are not available.  The device synchronizes the GPS with the INS automatically 
and maintains accurate position information, even when GPS signals may not be 
available.  

2.4.2.3 AHRS - To determine the attitude and direction of the vehicle.  This sensor gives 
back magnetic heading information as well as 3 axis acceleration and positions, 
representing the attitude of the vehicle.  Yaw rate is used as input to the radar systems.  
This is back up to the INS.  

2.4.2.4 OBD-II - To collect distance and speed information from the vehicle OBD-II (On 
Board Diagnostics) interface.  This is used to determine position based on dead 
reckoning.  It is an imprecise system, but allows us a back up to the more accurate 
systems.  We can also access wheel rotation information from the OBD-II interface as 
additional input.  

2.4.3 Route Analysis and Management (See Figure 1) 
The route and mission processing module will use the DARPA defined RNDF (Route 



7 

Network Data File) and MDF (Mission Data File) as its input.  It will determine routing 
and will provide the route information to the Path Planning Module (PPM) and to the 
Mission Objective Module (MOM).  Based on current position, learned object positions, 
and mission objectives, this module will use routing algorithms to calculate the fastest 
route to the next checkpoint.  It will also reroute the vehicle in the event a route is 
blocked.  This module will collect and remember information about the location of static 
objects along the course and in zones.  

2.4.4 Vehicle Monitoring (See Figure 1) 
Vehicle Monitoring will collect data about the current operation of the vehicle.  Most of 
this data will be obtained from the On Board Computers, using the On Board Diagnostics 
(OBD-II) interface.  Data includes Revolutions per Minute (RPM), engine temperature, 
wheel rotations, fuel levels, and other related vehicle information.  

2.4.5 Scene Analysis Module (SAM) (See Figure 1) 
The SAM collects the data from all the object sensing subsystems.  SAM is responsible to 
fuse all the incoming data into a 360° map of the area around the vehicle. SAM resolves 
all duplicate objects from the multiple sensors and projects objects that may be 
temporarily out of view. This information will be used to increase the aggressiveness of 
the vehicle as it becomes more aware of its surroundings and to reduce the volume of 
object data that gets processed.   

2.4.6 Path Planning Module (PPM) (See Figure 1) 
This module takes the scene map from SAM, the state information from MOM, and the 
route information from RAM (Route Analysis and Management).  PPM projects the 
position and trajectory of all moving objects and calculates an appropriate path and speed 
for our Urban Challenge vehicle to proceed safely.  It will feed back to MOM 
information required by the state machine concerning the location and movement of 
objects relative to our Urban Challenge vehicle and sends speed and direction (heading) 
commands to the vehicle control system.   

2.4.7 Vehicle Control Subsystem (See Figure 1) 
The Vehicle Control Subsystem is where the physical input/output is performed with the 
vehicle.  The vehicle systems controlled include:  Steering, Brakes, Accelerator, 
Transmission Shift, Blinkers, Rotation of Top Radar Units, Driver Display Module (used 
for debug), and Back up Lights.  Primary inputs to this subsystem are speed and steering 
angle, as well as inputs to other devices.  This module has no awareness of its 
surroundings outside the vehicle.  This is the only module that has code specific to the 
vehicle in which it is operating.  

2.4.8 Mission Objective Module (MOM)  (See Figure 1) 
This module is responsible to make all decisions required to execute and complete the 
current mission.  This is implemented as a rules-based state machine. Other modules in 
the system will make specific decisions based on what state the system is in.  The 
primary states are included in table 1.    
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This is a preliminary list of valid states (See Table 1).  This list will be updated as 
required during development and testing  

The MOM state machine utilizes states from Table below:  

State Definition  State Definition  State Definition 
Lane Following  Turn Left  E-stop Pause 

Passing  Turn Right  E-stop Disable 
Shift Lane Left  Turn Center  Panic Stop 

Shift Lane Right  Zone Find Parking  Stop 
Intersection Approach Stop  Zone Park  Blocked 

Intersection Approach Rolling  Zone Back Out  U-Turn 
Taxi Cab Rules  Zone Find Exit  Reverse 

  

Table 1 – Primary  States for State Machine 

2.4.9 System Communication  

The communications manager is based on the Jaus (Joint Architecture for Unmanned 
Systems) standard [1] for unmanned vehicle communications.  It is a message passing 
protocol used for communication between all the sensors and major architectural units in 
Insight’s system. 

2.4.10 Power Systems for the Vehicle  

The power system is based around a 24v DC automotive design.  The stock 12v alternator 
was replaced with a larger 24v model that has enough capacity to power all the systems.   
The power distribution diagram is shown in figure 3.  

The alternator’s voltage regulator is equipped with self-monitoring circuitry.  It can send 
out via Ethernet data such as line voltage and load utilization.  The computer programs 
can determine over the network if the alternator is being taxed at full load, such as when 
the batteries are being charged.  The software can also determine if the alternator is 
malfunctioning, such as when the output voltage is too high or low.    

Operating both 12v and 24v systems off only 2 batteries would cause uneven discharge 
between each battery.  One battery would get deeply discharged while the other would 
become severely overcharged.  This problem is mitigated by the addition of a battery 
equalizer, which balances the load between the batteries.  The batteries will both 
discharge and charge at the same rate.  They will have a much longer useful lifespan and 
makes using 12v devices in a 24v system practical.     



9 

  

Figure 3 – Power Distribution Diagram  

Two battery cut-off switches, when both switched off, disconnect all power from the 
vehicle.  This is the primary means to power down the vehicle for the night.  The 
batteries also regulate the alternator voltage, so they must not be disconnected while the 
engine is running.  

Since the original vehicle runs on 12v, the original systems were connected across one of 
the two batteries.  To balance the load between the batteries, some 12v equipment draws 
power from the 2nd battery.  The battery equalizer compensates for the difference in 
power usage between the batteries.  

The alternator generally produces 26v or so to keep the batteries charged.  It also has the 
potential to produce electrically noisy power (dirty power).  Sensitive computer 
equipment does not operate well with this kind of power.  To ensure reliable power for 
the sensitive devices, power is first passed though an EMI filter to remove some of the 
high frequency noise.  DC-to-DC voltage power supplies take in the dirty power and 
produces clean power at voltages required by the various devices.  For example, 26v, the 
normal operating voltage of a 24v system, is above the safe operating voltage range for 
the SICK lidars.  Any errant voltage spikes from the alternator could permanently disable 
the lidars if they were connected to dirty 24v power.    
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DC-to-DC power supplies are also used to power all the mini computers.  The power 
supplies are substitutes for the power bricks they were sold with.  DC-to-DC supplies 
power all the other computerized equipment.  Exceptions are made for equipment that is 
designed to be powered by an automobile, such as the Radar units. Those can be powered 
using unfiltered power from the alternator, as they would be in a production vehicle.   

2.4.11 E-Stop System  

Our E-Stop system uses multiple E-Stop switches located on the exterior of the vehicle 
and in the passenger compartment. These are designed to be fail-safe and to activate if 
any connection is broken. This design will stop the vehicle if any E-Stop wire becomes 
broken, the heartbeat signal from the software is lost, the signal from a remote E-Stop 
controller is lost, or a if commanded from the remote E-Stop controller. We support 
either our Insight designed remote E-Stop controller or the Omnitech Robotics E-Stop 
controller used by DARPA.  

3.0 Analysis and Design   

The key areas where complex mathematical techniques were needed are: PPM, RAM, 
Camera Processing, and Object Detection. 

3.1 Path Planning Module (PPM)  

3.1.1 Design Choices  

The Path Planning Module receives input from the RAM, MOM, PAM, SAM, and 
Vehicle Control subsystems.  PPM checks the route for obstructions, finds a clear path, 
and finds shortest path.  

PPM creates a list of waypoints to drive using input from the waypoint list, curb finder, 
and lane finder.  The distance ahead that PPM looks is proportional to the speed the 
vehicle is currently or planned to travel.  It then checks that route for obstructions using 
vector analysis.  Object polygons are expanded by ½ of the vehicle width plus a safety 
margin using Minkowski Sums [2], [3].    

Minkowski sums are the sum of two polygons.  For this application one of the polygons 
is the vehicle and the other polygon is an object.  The center of the vehicle polygon is 
added to the object polygon effectively growing it by ½ the vehicle width.   
See Figure 4. 
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Figure 4 - Application of Minkowski Sum  

After summing all the objects around the vehicle, the vehicle can now be represented by a 
line.  If the line can traverse the desired path without intersecting any of the expanded 
objects, then there is room for the vehicle to operate on that path.  If the line intersects 
any of the objects then a new path is computed.  As you can see in the following 
example, the direct route from the vehicle location to the waypoint destination intersects 
with the expanded polygons.  Therefore the direct route would collide the normal vehicle 
polygon with the normal objects.  See figure 5 which follows.                     

Figure 5 - Route through Minkowski Summed Objects  

Vehicle Position 

Waypoint 
Destination
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The new path around the objects is determined by creating a visibility graph [4] for each 
object corner, the current vehicle position, and the ending waypoint.  That graph is 
traversed using a Dijkstra’s [5],[6] shortest path algorithm.  The new path is then used as 
the vehicle proposed path.    

3.1.2 PPM Results & Performance  

This combination of Minkowski sums, visibility graphs, and Dijkstra’s shortest path 
algorithms provides an exact way to ensure that the vehicle does not impact any objects 
and takes the shortest path around objects to reach waypoint destinations.   

If there is no route around the object by staying in the current travel lane, then blockage 
information is sent to the MOM module for decision processing and the vehicle will stop 
a safe distance from the object.  MOM can then choose to have the vehicle shift lanes, 
wait for the blockage to clear, or make a U-turn.  

Once a clear path is established then PPM calculates the maximum speed the vehicle can 
travel.  The radius of any turns in the proposed route is calculated and the vehicle speed is 
limited according to the Centripetal force in the corners.  For cornering the vehicle will 
not exceed a maximum lateral G force.  The G force is used to calculate the maximum 
speed that the vehicle can travel.    

V=sqrt(fr)    

where f is the maximum force, v is the velocity maximum and r is the radius of the turn.    

The PPM module is dependant on timely input information from other components to 
accurately drive the vehicle without contacting objects.  If any required information is 
missing then the PPM module will pause the vehicle and wait for that component to be 
automatically restarted, before continuing.   

3.2 Route Analysis & Management (RAM) Analysis & Design 

3.2.1 Overview  

The Route Analysis & Management module (RAM) performs the following functions: 
1. Process the Route Network Data File (RNDF) and maintain an in-memory route 

network 
2. Process the Mission Data File (MDF) and maintain a list of checkpoints for the 

mission 
3. Find routes between each of the checkpoints 
4. Update the list of completed waypoints/checkpoints and broadcast the list of next 

waypoints along the mission 
5. Broadcast information about stop signs, turns, curves and intersections 
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6. Broadcast a recommended state for the vehicle based on current position, speed 
heading and route and mission information 

7. Anticipate and recommend the next state for the vehicle 
8. Receive information about static road blocks and re-plan the mission as necessary  

3.2.2 Route Solving Design Choices  

3.2.2.1 Processing the RNDF  

The first function required of the RAM module is to process the RNDF.  The RNDF is a 
text file containing a description of the network of roads where the autonomous mission 
is to take place.  A complete description of the RNDF syntax is found in [7].  RAM 
parses the RNDF and builds an internal data structure representing the road segments, 
lanes, checkpoints, waypoints and other pertinent data.    

3.2.2.2 Processing the MDF  

Next the MDF is read in and processed (also defined in [7]).  The MDF contains a list of 
checkpoints that must be visited to complete the mission.  RAM identifies the list of 
waypoints that make up the shortest route between each of the consecutive checkpoint 
pairs.  A greedy algorithm is used to quickly find a “good” route. Time is used as the cost 
function for traveling from waypoint to another, and the next waypoint chosen is the one 
that is closest (using a straight-line distance) to the destination checkpoint.  Stop signs 
incur an additional time penalty, as do traveling through parking lots, to discourage 
planning a route through them unless necessary.  

Once an initial route is found, the time required to traverse the route is used as the upper 
limit.  A binary search is then conducted by searching for another route that can be 
completed in ½ the time, using the same greedy algorithm.  While searching for a route, 
if the route’s time exceeds the specified time limit, the route is abandoned and the 
algorithm backtracks to the next greediest waypoint.   

If a route is found within the time limit, the time is reduced (by 1/2) and the search is 
repeated. If not found, the time is increased (by ½) and the search is repeated again.  

Once the list of routes required to complete the mission has been found, a subset of the 
list of waypoints is broadcast to other components via Jaus Manager for defining the 
primary driving path. 

3.2.3 RAM Algorithm Performance  

As expected, the performance of the RAM algorithm depends primarily on the size of the 
RNDF, but is basically linear with respect to the number of checkpoints (refer to Table 
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2).  For example, an MDF containing 1,000 checkpoints was processed using the Sample 
RNDF provided by DARPA [15].  Approximately 1.9 seconds were required to 
determine all 999 routes.  In a second example, 10,000 checkpoints (9,999 routes) were 
processed in less than 20 seconds.   This latter example also demonstrates that the RAM 
module is robust enough the handle large volumes of data.   

Number of Routes 
(Checkpoints - 1) 

Total Time 
(sec) 

Average Time 
Per Route (sec) 

9

 

0.015

 

0.001667

 

999

 

1.938

 

0.001940

 

9999

 

19.718

 

0.001972

  

Table 2 – Checkpoint Processing Time 

3.2.4 Current State / Next State Prediction Design Choices  

Once the waypoint list has been identified, RAM begins monitoring the vehicle’s position 
based on position, speed and heading information provided by the Path Planning Module 
(PPM).  Using the RNDF information and position, RAM computes a recommended state 
for the vehicle’s operation.  The recommended state is comprised of a primary state and a 
sub-state. The primary state identifies a general disposition for the vehicle (normal 
driving, in an intersection, in a parking lot, etc.)  The sub-state provides additional 
information about the primary state (following in a lane, turning, in a curve, finding a 
parking spot, stopping, etc.)  This state information is used to signal other modules about 
the various driving maneuvers required (turning, parking, etc.).  Based purely on position 
and defined routes, this module is not aware of an influences outside of the vehicle.   

It is not enough to know the current state of the vehicle (approaching a stop line for 
instance.)  The RAM module also predicts the next state for the vehicle and broadcasts it 
for other modules to use.  For instance, in an intersection, it is important to know that the 
vehicle will be turning left, after it has stopped at the stop line, so that the turn signal can 
be turned on prior to the turn.    

The RAM module provides additional information on upcoming intersections, turns, 
curves, stop lines and, u-turns.  The distance to these points is broadcast, as well as the 
angle for turns and curves.  This information helps the driving modules make appropriate 
changes in speed and direction to negotiate these points correctly.    

3.2.5 Intersection Identification and Management  

When the vehicle approaches an intersection, the RAM module provides information 
about the structure of the intersection.  Lanes where other traffic may interfere with the 
vehicle’s progress are identified, and a relative heading to waypoints in these lanes is 
broadcast.  This information allows the various sensors (lidars, radars, etc) to know where 
to scan the intersection to identify other traffic.     
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3.2.6 Fault Tolerance  

Like all software modules in the Lone Wolf, the RAM module must be fault tolerant. It 
supports: 

 
Checkpoint/Restart capability 

 
Waypoint look-ahead capability 

 
Automatic route re-planning  

 

Checkpoint bypassing   

3.2.6.1 Checkpoint/Restart Capability  

As each checkpoint is completed, RAM writes certain mission related information to 
disk. In the event of a hardware failure, software failure, or other problem before a 
mission is complete, the RAM module may be restarted by the controlling software.  
When restarted, RAM will restore the current mission related information, re-plan routes 
where necessary based on the vehicle’s current position and resume the process of 
broadcasting waypoints, recommended states and other mission information to other 
modules.    

3.2.6.2 Waypoint Look-Ahead Capability  

During the course of a mission, the vehicle may be traveling at a relatively high rate of 
speed as compared to the proximity of some number of waypoints.  If waypoints are 
placed relatively close together (as in the case of a curve or a turn for instance), it may be 
possible for the vehicle to bypass a waypoint before the RAM module has determined 
that the criteria for visiting the waypoint have been satisfied. Or, due to obstacles in the 
path to a waypoint (or at the waypoint itself), it may not be possible for the vehicle to get 
close enough to the waypoint to consider it visited.   

To ensure that the RAM module does not get stuck expecting the vehicle to visit a 
waypoint that has already been visited by the vehicle, the RAM module “looks” ahead 
some number of  waypoints, and makes decisions about visited waypoints based on the 
vehicle’s position compared to several waypoints.  
    

3.2.6.3 Route Re-planning  

Ordinarily, once the mission route has been planned, it should not have to be re-planned 
again unless the vehicle encounters some sort of a road-block that prevents passage.  
Periodically however, the RAM module compares its current position to the expected 
position along the route.  If too much of a discrepancy exists between the current position 
and expected position, the RAM module automatically re-plans the route from its current 
position to the next checkpoint.    
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In order to re-plan successfully, the RAM module must be able to locate the “best” 
waypoint that is relatively close to its current position to re-establish its location in the 
route network.   This feature is needed in cases where some failure causes the RAM 
module to be restarted, or in the event that some other condition causes the vehicle to 
deviate from the waypoint list being broadcast by the RAM module.  By re-planning only 
the affected portions of the route, time is saved during the re-planning process.  This can 
be crucial for instance, if some evasive action is required by the vehicle.  

3.2.6.4 Checkpoint Bypassing   

In the event that the RNDF has an error or a valid route cannot be found between 2 
checkpoints (A and B), the RAM module is able to bypass checkpoint B and instead plan 
a route from checkpoint A to the checkpoint after B.  This capability is in place to satisfy 
the fundamental ground rule: “Always complete the mission.”    

3.3 Camera Processing 
A total of three different methods were tried to perform line detection for real time line 
detection from camera images. The setup is a Firewire 1394 camera from Point Grey 
systems, DragonFly2, interfaced via libdc1394 [9] to a “C” based Linux environment. 

3.3.1 Design Choices 

3.3.1.1 Method 1: Lane Detection From Polygons                                         
This method extracts lane markings from colored polygon regions in the image. Color is 
inferred (flatColorImage) from the captured image (newimage) using HSV transform[10], 
and converted to a Grey scale image (greyImage). Edges (edgeImage) from the blurred 
image (greyBlurImage) were extracted using the Canny Edge [11], [12] algorithm and 
thinned using Non-Maxima suppression (nmsImage), which   provided lines 
(houghImage) using Hough Transform [11]. Lines were trimmed, grouped  
(groupedSegmentImage) and averaged (groupedSegmentAvgImage) to generate polygons. 
The major pixel color within each polygon gave it the primary color. Adjacent polygons 
with same primary color were merged (mergedPolyImage). Lane markings were 
extracted from yellow and white Polygons. 

3.3.1.2 Method 2: Lane Detection from Linear Parabolic Curves 
As described in the paper [8], the road is modeled as a set of “near” Linear and “far” 
Parabolic curve segments. Capturing the image, extracting color and edge information is 
same as in previous method. The LAPACK [14] library was used to solve the 6x6 system 

(A)
T
 W A C = (A)

T
 W B, which gave the parameter values. These parameters were 

plotted as the Linear part of the curve (LinearCurveImage). 

3.3.1.3 Method 3: Lane Detection from Color scan and Line Segments 
This method is based on scanning the captured color image for yellow and white regions 
and extracting lines from such regions which were within reasonable limits of a typical 
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lane marking. This way the edge image was a skeleton of the yellow and white regions 
which resembled lane markings. Using this skeleton image, the lines and segments were 
determined as described in the first method, using thresholds tuned to give best results. At 
the end, this resulted in yellow and white lines perceived to be a good close 
approximation to the actual lane markings.   

3.3.2 Camera Results  

3.3.2.1  Method 1: Lane Detection From Polygons 
The Figure 6 below has the images: Left to right, top to bottom: newImage, 
greyBlurImage, edgeImage, nmsImage, groupedSegmentImage, 
groupedSegmentAvgImage, flatColorImage (overlay groupedSegmentAvgImage), 
mergedPolyImage.  

                       Figure 6 – Method 1    Figure 7 – Method 2  

3.3.2.2  Method 2: Lane Detection from Linear Parabolic Curves 
The Figure 7 above has the output of the linear solver in the bottom right image 
(LinearCurveImage).  

3.3.2.3 Method 3: Lane Detection from Color scan and Line Segments 
The Figure 8 below has the images: Left to right, top to bottom: newImage, 
flatColorImage, edgeImage, groupedSegmentImage, groupedSegmentAvgImage, 
TrimmedLineSegments, TrimmedLineSegments, flatColorImage (with dark grey regions 
recolored as black), LinearCurveImage.  

The observations from the 3 methods described above are summarized in Table 3.  
Method 3 is the preferred way to detect lane markings and was selected for use in our 
Urban Challenge vehicle.     
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Figure 8 – Method 3 

3.3.3 Observations and Analysis 
The results from the three methods are compared in Table 3. 

Feature Method 1 Method 2 Method 3 

Uses standard algorithms Yes Yes Yes 

Frame Rate achieved Up to 5 fps Up to 5 fps Up to 10 fps 

Main Errors introduced by Merging non 
convex polygons

 

Imperfect edge 
detection and left/right 
split 

Nothing major 

Can detect multiple lanes Might No Yes 

Can detect solid vs dashed lane marking No No Yes 

Can detect yellow vs white lane marking Yes No Yes 

Good lane detection performance 
achieved only when 

Small number of 
convex polygons

 

Proper edge detection 
and proper left/right 
edge pixels split 

All cases 

    

Table 3 – Comparison of Image Processing Methods 
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3.4 Lidar Processing  

3.4.1 Analysis and Design  

The vehicle uses 8 different SICK LMS 291lidars.  They are located around the vehicle in 
a setup to gain 360 degrees of vision around the vehicle.  They are used to find objects 
that are both above and below the road/ground surface.  These units are designed to be 
used for close to midrange object detection.  There are three major functions that are 
served by the sets of lidars.  The first set detects objects above the ground, another set 
detects the contour of the surface ahead of and behind the vehicle, and the final set 
searches for edges of the driving surface.  

The first two sets of lidars are used in conjunction with each other to create a more 
accurate representation of the surroundings.  Their purpose is to find objects that are 
located above the current driving surface, for example other vehicles, sign posts, etc.  
These lidars are located on all four of the corners of the vehicle and on the center of the 
front and rear bumpers.    

The four lidars on the corners are located at 45 degrees to the vehicle centerline and are 
looking outward on a horizontal plane.  Since the angles do not allow for complete 
coverage around the vehicle, there are slight blind spots directly next to the side doors 
and directly behind the rear bumper.  These blind spots are less than a meter in distance.  
These are not of concern because any object would have to travel through the field of at 
least one lidar before it would be able to enter a blind spot.  The vision from each of the 
corner lidars also overlaps with at least one other unit.  This is used to get better 
representations of the size and shape of the objects within the view.  For example, the 
right and left front lidars could see different sides of an object independently; however, 
when their analysis is combined into one object we see a single object with a much more 
accurate shape.  

The other lidars are located on the center of the front and rear bumpers of the vehicle. 
They are looking outward in a vertical direction.  Their purpose is to build a contour map 
of the road surface in front of the vehicle.  That is combined with the data from the four 
corner lidars to determine what portions of the points are at the same level as the ground.  
This helps us to clean up a picture and remove the ground from the data.  This noise from 
the ground is seen in situations where the vehicle’s suspension allows it to tilt towards the 
ground or when the ground slopes upward.  

The third and final set of lidars on the vehicle is used to detect the edges of the driving 
surface.  They are positioned on the front bumper and looking out vertically at a 45 
degree angle.  They scan outward from the vehicle and are looking for untraversable 
changes in terrain height.  This change would indicate a ditch, curb, or edge of the road.  
Their main objective is to cause fine corrections to the vehicle to keep it off of the edges 
of the road.  
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The lidar information is consolidated and combined into objects that are described using 
shapes called convex hulls or convex envelopes [2].  A convex hull is the minimal 
convex set of points in real vector space that contains the union of a set of points.  This is 
the idea that if a rubber band was wrapped around many points, it would be the shape that 
includes all of the points with only convex angles.  These shapes have many advantages 
for this type of use.  One main advantage is that it allows the software to minimize the 
number of points contained within an object for processing purposes while still keeping a 
valid shape and size.  For example it would eliminate the inner points within a 
cluster/object.  Another advantage is that it allows for a natural progression along the 
edges of obstacles.  It stops the vehicle from becoming stuck within a concave object.  
For example, if there were an “L” shaped object in front of the vehicle, a concave object 
could allow the vehicle to drive into the inside corner of the L.  However, since the object 
is convex, it would combine the two points on the edge of the L and therefore push the 
vehicle to avoid the inside of the L.  

This implementation involves the use of the Graham-scan convex hull algorithm [2].  
This algorithm was used due to its good mixture of simplicity in calculations and its 
efficiency.  There are two main steps that are performed to complete this process.  The 
first step is to sort the points based on their location within space.  This process can be 
performed in O(n log n) time due to the nature of the sort used.  Then once the points are 
all sorted the software iterates through the points three at a time.  A calculation is 
performed to determine the angle each set of three points creates.  If it is a concave angle 
then the center point is removed and the next point within the sorted list is added to the 
set of three points.  Assuming the three points create a convex angle then the earliest 
point in the set of three is considered to be on the outer surface of the object.  This 
process is considered O(n) because the sorted list is only passed through once.  Therefore 
if we compare the two big O notations for each of the steps within the process, O(n log n) 
is the larger of the two time frames, therefore the entire process is performed in O(n log 
n) time. 

3.4.2 Lidar Processing Results and Performance  

The impressive performance of the lidar sensors is their extreme accuracy in their 
measurements; however, there are limitations to its use based on real world scenarios.  
The device documentation lists a maximum range of 80 m.  However, we have 
determined through years of testing that the practical range of these sensors is roughly 45 
to 55 m.  At this range the values are quite consistent and very reliable.  However, one 
more performance issue is the lack of reflectivity off of certain black objects.  When this 
occurs, the lidar values where the black object is seen go to infinity, or state that there is 
actually nothing at that location.  This issue is dealt with using the different sensors to 
make up for each one’s shortcomings. 



21 

3.5 Testing 

3.5.1 Methodology 
Insight has a staged, systematic test methodology.  The high level description of the Test 
Process is shown in Figure 9.  The testing takes place in stages to isolate and test 
individual modules.  This is followed by driver-in-the-loop testing for Basic Driving 
Behaviors, followed by testing with no driver.  This process is again followed for the 
Advanced Driving Behaviors. 

 

Figure 9 - Vehicle Test Process 

3.5.2 Simulation  
A key method that we used to debug and test our software was through the use of an 
intricate simulator.  This software allowed us to gather information on actual missions 
around a defined course to replay later.  We are able to replay missions with timing 
considerations in place to find out the vehicles reaction before actually running it on the 
car.  This allows for more controlled testing of an uncontrolled environment.  This allows 
us to be able to rerun the same information many times and view what difference our 
algorithm or parameter tuning causes.  
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4.0 Test Status  

The effectiveness of the key modules was discussed previously, but this section shows 
the overall status of the project in its test phase.  Table 4 shows the result of testing at the 
time of this paper.    

TEST PHASE STATUS BEHAVIORS 
Unit Test sensor modules Completed  
Vehicle Hardware Integration Completed  
Driver-in-loop Test 1 Completed In parking lots  
Driver-in-loop Test 2 Completed Public Streets 
Test  Phase 1 Completed Vehicle Requirements 

Basic Navigation 
Basic Traffic 

Test Phase 2 In process Advanced Navigation 
Test Phase 3 In process Advanced Traffic 
Test Phase 4 In process Realistic Traffic 

Passing Moving Vehicles 
Table 4 – Testing Status 

5.0 Summary  

Insight Racing is now on its third generation of autonomous vehicle software.  After a 
12th place finish in the 2005 Grand Challenge, Insight has continued to develop and refine 
its architecture and technologies. This latest design is based on Commercial Off the Shelf 
(COTS) hardware and an updated system architecture.      

Preliminary testing has confirmed the scalability and flexibility of this solution.   After 
taking delivery of the Elise from Lotus, we were autonomously driving the vehicle within 
4 weeks.  Since then, we have continued to test the vehicle at different speeds and in 
different test environments.    

The capability to do significant testing in a simulation mode has allowed for development 
and testing to continue even when weather conditions have not been suitable for testing 
or when the vehicle is unavailable.   Simulation mode has also allowed us to test all new 
code without risk to the vehicle and test crew. A significant number of problems have 
been resolved without starting the vehicle.  

Technical development has been targeted at improved information from camera 
technologies, better techniques for managing large numbers of physical objects, new 
decision making capabilities, and the ability to miniaturize our system.  We continue to 
focus on reliability, safety, and backup systems to support safe operations of the vehicle 
at all times.  

Insight Racing will continue to develop new and improved capabilities through the use of 
system simulation and active testing.
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